Approximation to the Poisson distribution incorporating the use of technology from the Ontosemiotic
DOI:
10.46551/emd.e202112Keywords:
Distribution of Poisson, Teaching Experiment, Software Use, University LevelAbstract
This paper presents the results of the implementation of a Poisson distribution teaching design incorporating the use of Fathom software. The teaching experiment took place during three class sessions and 20 Engineering students from a Statistical Methods course at a chilean university participated. To analyze the productions of the participants, content analysis and some theoretical elements of the ontosemiotic approach were used. The results indicate that it was motivating for the participants to use the technological tool, and it allowed them to understand and reason about the main characteristics of the Poisson distribution as the final results of the questionnaire suggested.
Downloads
References
ALVARADO, Hugo; GALINDO, Maritza; RETAMAL, Lidia. Comprensión de la distribución muestral mediante configuraciones didácticas y su implicación en la inferencia estadística. Enseñanza de las Ciencias, v. 31, n. 2, p. 75-91, mayo/ago. 2013.
ARROYO, Indira; BRAVO, Luis; LLINAS, Humberto; MUÑOZ, Fabián. Distribuciones Poisson y Gamma: una discreta y continua relación. Prospect, Bogotá, v. 12, n. 1, p.99-107, ene./jun. 2014.
BATANERO, Carmen. Didáctica de la Estadística. Granada: Grupo de Investigación en Educación Estadística, 2001.
BATANERO, Carmen; BEGUÉ, Nuria; GEA, María Magdalena; ROA, Rafael. El muestreo: una idea estocástica fundamental. Suma, n. 90, p. 41-47, mar. 2019.
BATANERO, Carmen; BOROVCNICK, Manfred. Statistics and probability in high school. Rotterdam: Sense Publishers, 2016.
BATANERO, Carmen; TAUBER, Liliana Mabel; SÁNCHEZ, Victoria. Students’ reasoning about the normal distribution. In: BEN-ZVI, Dani; GARFIELD, Joan. (Ed.). The challenge of developing statistical literacy, reasoning and thinking. Dordrecht: Springer, 2004, p. 257-276.
BEN-ZVI, Dani; BAKKER, Arthur; MAKAR, Katie. Learning to reason from simples. Educational Studies in Mathematics, v. 88, n. 3, p. 291-303, mar. 2015.
BIEHLER, Rolf; BEN-ZVI, Dani; BAKKER, Arthur; MAKER, Katie. Technological for enhancing statistical reasoning at the school level. In: CLEMENTS, McKenzie Alexander; BISHOP, Alan Paul; KEITEL, Christine; KILPATRICK, Jeremy; LEUNG, Frederick K. S. Third International Handbook of Mathematics Education. New York: Springer, 2013, p. 643-689.
CANTORAL, Ricardo; RÍOS, Wendolyne; REYES, Daniela; CANTORAL, Enrique; BARRIOS, Eleany; FALLAS, Rodolfo; BONILLA, Antonio. Matemática Educativa, transversalidad y Covid-19. Revista Latinoamericana de Investigación en Matemática Educativa, Ciudad de México, v. 23, n. 1, p. 1-19, 2020.
CRUZ-RAMÍREZ, Miguel; ÁLVAREZ-REYES, Salvador Eladio; PÉREZ-SANTOS, Francisco Javier. Sobre la enseñanza de la Distribución de Poisson en carreras de Ingeniería. Bolema, Rio Claro, v. 28, n. 50, p. 1117-1134, dez. 2014.
EICHLER, Andreas; VOGEL, Markus. Three approaches for modelling situations with randomness. En: CHERNOFF, Egan J.; SRIRAMAN, Bharath. (Ed.). Probabilistic thinking: presenting plural perspectives. Heidelberg: Springer, 2014, p. 75-99.
FINZER, William. Fathom dynamic data software. Emeryville: Key Curriculum Press. 2007.
FONT, Vicenç; GODINO, Juan Díaz; GALLARDO, Jesús. The emergence of objects from mathematical practices. Educational Studies in Mathematics, v. 82, n. 1, p. 97-124, 2013.
FRANKLIN, Christine; KADER, Gary; MEWBORN, Denise; MORENO, Jerry; PECK, Roxy; PERRY, Mike; SCHEAFFER, Richard. Guidelines for assessment and instruction in statistics education (GAISE) report: A Pre-K- 12 curriculum framework. Alexandria, American Statistical Association, 2005.
GARCÍA-GARCÍA, Jaime; FERNÁNDEZ, Nicolás; IMILPÁN, Isaac. Desarrollo del razonamiento probabilístico en profesores de Matemáticas mediante simulación computacional. Paradigma, Maracay, v. 41, n.2, p. 404-426, ago. 2020.
GARFIELD, Joan; BEN-ZVI, Dani; CHANCE, Beth; MEDINA, Elsa; ROSETH, Cary; ZIEFFLER, Andrew. Developing students’ Statistical reasoning: connecting research and teaching practice. Dordrecht: Springer, 2008.
GEA, María Magdalena; PARRAGUEZ, Rafael; BATANERO, Carmen. Comprensión de la probabilidad clásica y frecuencial por futuros profesores. En: INVESTIGACIÓN EN EDUCACIÓN MATEMÁTICA XXII, 2018, Zaragoza. Actas del XXI SIEM. Zaragoza: SEIEM, 2017, p. 267-276.
GODINO, Juan Díaz; BATANERO, Carmen; FONT, Vicenç. The onto-semiotic approach to research in Mathematics Education. ZDM Mathematics Education, v. 39, n. 1-2, p. 127-135, jan. 2007.
GODINO, Juan Díaz; BATANERO, Carmen; FONT, Vicenç. The onto-semiotic approach: implications for the prescriptive character of didactics. For the Learning of Mathematics, New Westminster, v. 39, n. 1, p. 38-43, 2019.
GODINO, Juan Díaz; BURGOS, María; GEA, María Magdalena. Analysing theories of meaning in mathematics education from the onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, v. 52, p. 1-28, mar. 2021.
GODINO, Juan Díaz; CONTRERAS, Angel; FONT, Vicenç. Análisis de procesos de instrucción basado en el enfoque ontológico-semiótico de la cognición matemática. Recherches en Didactiques Mathematiques, Grenoble, v. 26, n. 1, p. 39-88, 2006.
GODINO, Juan. Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las Matemáticas. Cuadernos de Investigación y Formación en Educación Matemática, Montes de Oca, v. 8, n. 11, p. 111-132, dic. 2013.
IZCARA, Simón. Manual de investigación cualitativa. México: Fontamara, 2016.
MUÑIZ-RODRÍGUEZ, Laura; RODRÍGUEZ-MUÑIZ, Luis. J.; ALSINA, Ángel. Deficits in the statistical and probabilistic literacy of citizens: Effects in a world in crisis. Mathematics, v. 8, n. 11, p. 1-20, 2020.
PRATT, Dave; DAVIES, Neville; CONNOR, Doreen. The role of technology in teaching and learning Statistics. En: BATANERO, Carmen; BURRILL, Gail; READING, Chris (Ed.), Teaching statistics in school mathematics. Challenges for teaching and teacher education. A joint ICMI/IASE. New York: Springer, 2011, p. 97-107.
RAMÍREZ, Greivin. Formas de razonamiento que muestran estudiantes de maestría de Matemática Educativa sobre la distribución normal mediante problemas de simulación en Fathom. Revista Electrónica de Investigación en Educación en Ciencias, Buenos Aires, v. 3, n. 1, p. 10-23, ene./jul. 2008.
ROLDÁN-LÓPEZ, Antonio Francisco; BATANERO, Carmen; ALVAREZ-ARROYO, Rocío. Conflictos semióticos relacionados con el intervalo de confianza en estudiantes de Bachillerato e Ingeniería. Educação Matemática Debate, Montes Claros, v. 4, n. 10, p. 1-25, 2020.
SALINAS, Jesús; VALDEZ, Julio; SALINAS-HERNÁNDEZ, Ulises. Un acercamiento a la metodología lesson study para la enseñanza de la distribución normal. En: INVESTIGACIÓN EN EDUCACIÓN MATEMÁTICA XXII, 2018, Gijón. Actas del XXII SIEM. Granada: SEIEM, 2018, p. 525-534.
SAMPIERI, Roberto. Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. México: McGraw Hill. 2018.
ZACKS, Shelemyahu. Parametric statistical inference: basic theory and modern approaches. Oxford: Pergamon Press. 2014.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.