O Estresse salino na produção de exopolissacarídeos pela Chaetoceros neogracilis
DOI:
10.46551/ruc.v27n1a4Resumo
Objetivo: Avaliar o efeito da salinidade no cultivo da microalga Chaetoceros neogracilis para produção de pigmentos fotossintetizantes e exopolissacarídeos. Método: Foram realizados sete tratamentos com diferentes salinidades, por sete dias. Diariamente foram realizadas contagens celular e medição da absorbância, para analisar o crescimento e a densidade celular. Os pigmentos fotossintéticos foram determinados por espectrofotometria, e os exopolissacarídeos por precipitação alcoólica do sobrenadante. Resultados: Na salinidade 25‰ ocorreu o maior valor médio de absorbância (1.032 ± 0.039 nm), porém a maior densidade celular foi obtida na salinidade 20‰ (481±29 x104cél.mL-1). A maior concentração de pigmentos foi registrado em salinidade de 15‰ (1,820, 2,566 e 3,915 mg.L-1, para clorofila-a, feofitina-a e carotenoides respectivamente). A produção de exopolissacarídeos foi diretamente influenciada pela salinidade, com maior concentração na salinidade de 35‰ (2.952±0,204 g.L-1). Conclusão: A microalga C. neogracilis é capaz de ser produzida em uma ampla faixa de salinidades, mas para maximizar a produção de exopolissacarídeos, deve-se utilizar salinidades elevadas.
Downloads
Referências
TACHIHANA, Saki et al. High productivity of eicosapentaenoic acid and fucoxanthin by a marine diatom Chaetoceros gracilis in a semi-continuous culture. Frontiers in bioengineering and biotechnology, v. 8, p. 602721, 2020. https://doi.org/10.3389/fbioe.2020.602721.
HASSAN, Md Mahbubul.; PARKS, Victoria.; LARAMORE, Susan. Optimizing microalgae diets for hard clam, Mercenaria mercenaria, larvae culture. Aquaculture Reports, v. 20, p. 100716, 2021. https://doi.org/10.1016/j.aqrep.2021.100716.
BHATTACHARJYA, Raya et al. Depiction of growth specific changes in concentration of storage products in centric marine diatom Chaetoceros gracilis. Journal of Sea Research, v. 190, p. 102289, 2022. https://doi.org/10.1016/j.seares.2022.102289.
FU, Weiqi et al. Diatom morphology and adaptation: Current progress and potentials for sustainable development. Sustainable Horizons, v. 2, p. 100015, 2022. https://doi.org/10.1016/j.horiz.2022.100015.
ARSAD, Sulastri et al. The Application of Microalgae Feeding Regime on Whiteleg Shrimp Culture in Each Stage: A Mini Review. Sains Malaysiana, v. 52, n. 1, p. 1-16, 2023. http://doi.org/10.17576/jsm-2023-5201-01.
MILLEDGE, Jhon J. Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Bio/Technol,v. 10, p. 31-41, 2011.
BHATTACHARJYA, Raya et al. Bioprospecting of marine diatoms Thalassiosira, Skeletonema and Chaetoceros for lipids and other value-added products. Bioresource Technology, v. 318, p. 124073, 2020. https://doi.org/10.1016/j.biortech.2020.124073
KARTHIK, Ramachandran et al. Biochemical profile of shrimp larvae fed with five different micro algae and enriched Artemia salina under laboratory conditions. Int J Fish Aquatic Stud, v. 4, p. 376–379, 2016.
SANDEEP, Kizhakkekarammal Puthiyedathu et al. Efficiency of different microalgae as monospecific and bispecific diets in larval rearing of Penaeus indicus with special reference to growth, nutrient composition and antimicrobial activity of microalgae. Aquaculture Research, v. 52, n. 11, p. 5146-5154, 2021. https://doi.org/10.1111/are.15382.
JISHA, Kumaran; SINGH, Isaac S Bright.; VALSAMMA, Joseph. Comparative Nutritional Characterization of Marine Microalgae Chaetoceros muelleri and Nannochloropsis oceanica used as Live Feeds in Aquaculture. Journal of Aquatic Biology & Fisheries, v. 9, p. 142-151, 2021.
DISCART, Valerie et al. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresource technology, v. 152, p. 321-328, 2014. https://doi.org/10.1016/j.biortech.2013.11.019.
XIAO, Rui; ZHENG, Yi. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology advances, v. 34, n. 7, p. 1225-1244, 2016. https://doi.org/10.1016/j.biotechadv.2016.08.004.
FERREIRA, Andreia et al. Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. Algal Research, v. 59, p. 102439, 2021. https://doi.org/10.1016/j.algal.2021.102439.
ROSSI, Federico; DE PHILIPPIS, Roberto. Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis. The physiology of microalgae, p. 565-590, 2016. https://doi.org/10.100079/978-3-319-24945-2-21
DOGRA, Babita et al. Biochemical properties of water soluble polysaccharides from photosynthetic marine microalgae Tetraselmis species. Macromolecular Research, v. 25, p. 172-179, 2017. https://doi.org/10.1007/s13233-017-5016-x.
MARAN, Jeganathan Prakash; MEKALA, Venkatachalam.; MANIKANDAN, Sekar. Modeling and optimization of ultrasound-assisted extraction of polysaccharide from Cucurbita moschata. Carbohydrate polymers, v. 92, n. 2, p. 2018-2026, 2013. https://doi.org/10.1016/j.carbpol.2012.11.086.
DE JESUS RAPOSO, Maria Filomena; DE MORAIS, Rui Manuel Santos Costa; DE MORAIS, Alcina Maria Miranda Bernardo. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine drugs, v. 11, n. 1, p. 233-252, 2013. https://doi.org/10.3390/md11010233.
CASILLO, Angela et al. Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications. Marine drugs, v. 16, n. 2, p. 69, 2018. https://doi.org/10.3390/md16020069.
ZHANG, Jianzhi et al. Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. International Journal of Biological Macromolecules, v. 128, p. 761-767, 2019. https://doi.org/10.1016/j.ijbiomac.2019.02.009.
SALIMI, Fatemeh; FARROKH, Parisa. Recent advances in the biological activities of microbial exopolysaccharides. World Journal of Microbiology and Biotechnology, v. 39, n. 8, p. 213, 2023. https://doi.org/10.1007/s11274-023-03660-x.
KUMAR, Dhanesh; KAŠTÁNEK, Petr; ADHIKARY, Siba P. Exopolysaccharides from cyanobacteria and microalgae and their commercial application. Current Science, v. 115, n. 2, p. 234-241, 2018.
DELATTRE, Cédric et al. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology advances, v. 34, n. 7, p. 1159-1179, 2016. https://doi.org/10.1016/j.biotechadv.2016.08.001.
BERNAERTS, Tom MM et al. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology advances, v. 37, n. 8, p. 107419, 2019. https://doi.org/10.1016/j.biotechadv.2019.107419.
CHEN, Cheng et al. The potential and challenge of microalgae as promising future food sources. Trends in Food Science & Technology, v. 126, p. 99-112, 2022. https://doi.org/10.1016/j.tifs.2022.06.016.
ZHONG, Run et al. Transcriptome analysis reveals possible antitumor mechanism of Chlorella exopolysaccharide. Gene, v. 779, p. 145494, 2021. https://doi.org/10.1016/j.gene.2021.145494.
ZAMPIERI, Raffaella Margherita et al. Anti-inflammatory activity of exopolysaccharides from Phormidium sp. ETS05, the most abundant cyanobacterium of the therapeutic Euganean ther-mal muds, using the zebrafish model. Biomolecules, v. 10, n. 4, p. 582, 2020. https://doi.org/10.3390/biom10040582.
OZORIO, Renata Avila et al. Growth and enzymatic profile of the pacific white shrimp fed with Porphyridium cruentum extract. Boletim do Instituto de Pesca, v. 41, n. 1, p. 123-131, 2015.
MOHAN, Kannan et al. Potential uses of fungal polysaccharides as immunostimulants in fish and shrimp aquaculture: a review. Aquaculture, v. 500, p. 250-263, 2019. https://doi.org/10.1016/j.aquaculture.2018.10.023.
RICCIO, Gennaro et al. Ten-year research update review: Antiviral activities from marine organisms. Biomolecules, v. 10, n. 7, p. 1007, 2020.
WAN-MOHTAR, Wan Abd Al Qadr Imad et al. Use of zebrafish embryo assay to evaluate toxicity and safety of bioreactor-grown exopolysaccharides and endopolysaccharides from European Ganoderma applanatum mycelium for future aquaculture applications. International journal of molecular sciences, v. 22, n. 4, p. 1675, 2021. https://doi.org/10.3390/ijms22041675.
BERGMANN, S. M. et al. The application of exopolysaccharides (EPS) can prevent viral disease of fish. Bulletin of the European Association of Fish Pathologists, v. 42, n. 1, p. 15-27, 2022. https://doi.org/10.48045/001c.38087.
ROSSI, Federico; DE PHILIPPIS, Roberto. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life, v. 5, n. 2, p. 1218-1238, 2015. https://doi: 10.3390/life5021218.
MINGGAT, Elizerberth; ROSELI, Wardina; TANAKA, Yasuaki. Nutrient absorption and biomass production by the marine diatom Chaetoceros muelleri: effects of temperature, salinity, photoperiod, and light intensity. Journal of Ecological Engineering, v. 22, n. 1, p. 231-240, 2021. https://doi.org/10.12911/22998993/129253.
BEMAL, Suchandan; ANIL, Arga Chandrashekar. Effects of salinity on cellular growth and exopolysaccharide production of freshwater Synechococcus strain CCAP1405. Journal of Plankton Research, v. 40, n. 1, p. 46-58, 2018. https://doi.org/10.1093/plankt/fbx064.
SHETTY, Prateek; GITAU, Margaret Mukami; MARÓTI, Gergely. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells, v. 8, n. 12, p. 1657, 2019. https://doi.org/10.3390/cells8121657.
DECAMP, Antoine et al. Effects of the salinity on the biosynthesis of the polysaccharides of the marine microalgae Porphyridium cruentum. Algal Research, v. 71, p. 103089, 2023. https://doi.org/10.1016/j.algal.2023.103089.
FARKAS, Attila et al. Salinity stress provokes diverse physiological responses of eukaryotic unicellular microalgae. Algal Research, v. 73, p. 103155, 2023. https://doi.org/10.1016/j.algal.2023.103155.
LOURENÇO, Sergio O. 2006. Cultivo de microalgas marinhas: princípios e aplicações. São Carlos: Rima, 606 p, 2006.
GOLTERMAN, Herb.; CLYMO Richard.; OHNSTAD, MAM. Methods for physical and chemical analysis of freshwaters. Oxford. Blackwell Scientific Publications. Handbook, n .8, p 213, 1978.
COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO. CETESB – L5.306: Determinação de Clorofila a e Feofitina a: método espectrofotométrico. São Paulo: CETESB, 2014.
GUZMAN‐MURILLO, Maria. Antonia.; ASCENCIO, Felipe. Anti‐adhesive activity of sulphated exopolysaccharides of microalgae on attachment of red sore disease‐associated bacteria and Helicobacter pylori to tissue culture cells. Letters in applied microbiology, v. 30, n. 6, p. 473-478, 2000. https://doi.org/10.1046/j.1472-765x.2000.00751.x.
ARANZADI, E. et al. Evaluación del test del azul de dimetilmetileno (DMB) en el screening de las mucopolisacaridosis y su comparación con la prueba del cetilpiridinio (CPC). Rev. diagn. biol, p. 17-21, 2006.
ASULABH, K. S.; SUPRIYA, G.; RAMACHANDRA, T. V. Effect of salinity concentrations on growth rate and lipid concentration in Microcystis sp., Chlorococcum sp. and Chaetoceros sp. In: National Conference on Conservation and Management of Wetland Ecosystems. School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala. 2012.
ESPINAL, Edgar Oriris Carranza.; PORTILLO, Ricardo Gómez.; MARTÍNEZ, Marvin Antonio. Comparación de tres salinidades para evaluar el crecimiento poblacional de la microalga Chaetoceros muelleri. Revista Ciencia y Tecnología, p. 36-49, 2015. https://doi.org/10.5377/rct.v0i16.2178.
LOPES, Dilliani Naiane Mascena et al. Biomassa seca da diatomácea Chaetoceros gracilis em Diferentes salinidades visando a produção de biodiesel. Brazilian Journal of Development, v. 6, n. 2, p. 5707-5713, 2020. https://doi.org/10.34117/bjdv6n2-028
CAMPOS, Clarissa Vilela Figueiredo da Silva et al. Chlorella-Daphnia consortium as a promising tool for bioremediation of Nile tilapia farming wastewater. Chemistry and Ecology, v. 38, n. 9, p. 873-895, 2022. https://d oi.org/10.1080/02757540.2022.2120612.
LIU, Xiaoya; HONG, Yu; LIU, Yu. Cultivation of Chlorella sp. HQ in inland saline-alkaline water under different light qualities. Frontiers of Environmental Science & Engineering, v. 16, n. 4, p. 45, 2022. https://doi.org/10.1007/s11783-021-1479-2.
GUERMAZI, Wassim et al. Physiological and biochemical responses in microalgae Dunaliella salina, Cylindrotheca closterium and Phormidium versicolor NCC466 exposed to high salinity and irradiation. Life, v. 13, n. 2, p. 313, 2023. https://doi.org/10.3390/life13020313
LIANG, Ying et al. Effects of salinity stress on the growth and chlorophyll fluorescence of Phaeodactylum tricornutum and Chaetoceros gracilis (Bacillariophyceae). Botanica Marina, v. 57, n. 6, p. 469-476, 2014. https://doi.org/10.1515/bot-2014-0037.
DO, Jeong-Mi et al. Effect of salt stress on the biomass productivity and potential bioenergy feedstock of Graesiella emersonii KNUA204 isolated from Ulleungdo Island, South Korea. Frontiers in Energy Research, v. 11, p. 1056835, 2023. https://doi: 10.3389/fenrg.2023.1056835.
FRÉ, Nicéia Chies Da; RECH, Rosane; MARCILIO, Nilson Romeu. Influência da luminosidade e concentração salina na produção de lipídios e carotenoides pela microalga Dunaliella tertiolecta em fotobiorreator airlift. In: Congresso Brasileiro de Engenharia Química (20.: 2014 out. 19-22: Florianópolis, SC). Anais. São Paulo: ABEQ, 2014. 2014.
MINHAS, Amritpreet K. et al. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in microbiology, v. 7, p. 546, 2016. https://doi.org/10.3389/fmicb.2016.00546
HINDARTI, D. et al. Cadmium effects on growth and photosynthetic pigment content of Chaetoceros gracilis. World Scientific News, v. 145, 2020.
HIREMATH, Shaila; MATHAD, Pratima. Impact of salinity on the physiological and biochemical traits of Chlorella vulgaris Beijerinck. J Algal Biomass Utln, v. 1, n. 2, p. 51-59, 2010.
PUGKAEW, Wanvisa et al. Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica. Journal of Applied Phycology, v. 31, p. 969-979, 2019. https://doi.org/10.1007/s10811-018-1619-7.
CHAISUWAN, Worraprat et al. Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. Food Bioscience, v. 35, p. 100564, 2020. https://doi.org/10.1016/j.fbio.2020.100564.
DELATTRE, Cédric et al. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology advances, v. 34, n. 7, p. 1159-1179, 2016. https://doi.org/10.1016/j.biotechadv.2016.08.001.
MORAIS, M. G. et al. Exopolysaccharides from microalgae: Production in a biorefinery framework and potential applications. Bioresource Technology Reports, v. 18, p. 101006, 2022. https://doi.org/10.1016/j.biteb.2022.101006.
LAROCHE, Céline. Exopolysaccharides from microalgae and cyanobacteria: diversity of strains, production strategies, and applications. Marine drugs, v. 20, n. 5, p. 336, 2022. https://doi.org/10.3390/md20050336.
GAIGNARD, Clément et al. Screening of marine microalgae: Investigation of new exopolysaccharide producers. Algal Research, v. 44, p. 101711, 2019. https://doi.org/10.1016/j.algal.2019.101711.
YOSHIMURA, Hidehisa et al. The role of extracellular polysaccharides produced by the terrestrial cyanobacterium Nostoc sp. strain HK-01 in NaCl tolerance. Journal of applied phycology, v. 24, p. 237-243, 2012.
USMONKULOVA, Aziza; SHONAKHUNOV, Tulkin; KADIROVA, Gulchekhra. Activity of nitrogen-fixing cyanobacteria under salinity and heavy metals stress. Journal of Pharmaceutical Negative Results, v. 13, n. 3, p. 355-363, 2022. https://doi.org/ 10.47750/pnr.2022.13.03.055.
RAO, Ambati Ranga et al. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource technology, v. 98, n. 3, p. 560-564, 2007. https://doi.org/10.1016/j.biortech.2006.02.007.
DÍAZ BAYONA, Kenny C.; GARCÉS, Lucía Atehortúa. Effect of different media on exopolysaccharide and biomass production by the green microalga Botryococcus braunii. Journal of Applied Phycology, v. 26, p. 2087-2095, 2014.
ALLAN, Guy.; LEWIN, Joyce.; JOHNSON, Paul. Marine polymers. IV Diatom polysaccharides. 1972. https://doi.org/10.1515/botm.1972.15.2.102.
BELLINGER, B. J. et al. Biofilm polymers: relationship between carbohydrate biopolymers from estuarine mudflats and unialgal cultures of benthic diatoms. Aquatic microbial ecology, v. 38, n. 2, p. 169-180, 2005.
MISHRA, Avinash; JHA, Bhavanath. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresource technology, v. 100, n. 13, p. 3382-3386, 2009. https://doi.org/10.1016/j.biortech.2009.02.006.
EL ARROUSSI, Hicham et al. Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology, v. 30, p. 2929-2941, 2018. https://doi.org/10.1007/s10811-017-1382-1.
CONCÓRDIO-REIS, Patrícia et al. Bioprospecting for new exopolysaccharide-producing microalgae of marine origin. International Microbiology, v. 26, n. 4, p. 1123-1130, 2023. https://doi.org/10.1007/s10123-023-00367-9.