Physical Exercise as a Prophylactic Ally Against COVID-19: a Hypothesis Involving the Toll-Like Receptor 7 (TLR-7)

Exercise as a prophylactic ally against covid-19: a hypothesis involving the Toll-Like Receptor 7

Authors

DOI:

10.46551/ruc.v25n1a8

Keywords:

Physical Exercise, COVID-19, Innate Immunity, SARS-CoV-2, TLR-7

Abstract

It is hypothetical that the increase in the expression of TLR-7, a component of the innate immune system, in response to regular physical exercise, could positively influence the initial antiviral reaction against COVID-19. Objective: to find data to support the hypothesis regarding the prophylactic potential of physical exercises against COVID-19, through innate immunity involving TLR-7. Methodology: bibliographic research was adopted regarding papers available on PubMed. Results: there are indications of an important role of TLR-7 in the initial antiviral action against COVID-19 and different responses of TLR-7 after physical exercise. TLR-7 suppression is recorded as an acute effect after strenuous exercise of long duration, whereas its acute expression is observed after resistance exercise. Baseline increase in TLR-7 appears to occur after a 10-week aerobic training program. Considerations: TLR-7 suppression is a possible factor in reducing the initial antiviral reaction against COVID-19. More studies are needed to clarify the effects of physical exercises on TLR-7 and their potential on antiviral defenses against COVID-19, considering specificities such as: exercise intensity, exercise modality, duration of the session or training program, assessed population or other possible factors.

Downloads

Download data is not yet available.

Author Biographies

Diogo Martins Ribeiro, Centro Universitário FAEMA - UNIFAEMA

Licenciado em Educação Física pelo Centro Universitário da Faculdade de Educação e Meio Ambiente - FAEMA, Ariquemes-RO.

Mariléia Chaves Andrade, Universidade Estadual de Montes Claros - UNIMONTES

Mariléia Chaves Andrade possui graduação em Ciênicas Biológicas pela Universidade Federal de Minas Gerais (1995), mestrado em Imunologia pela Universidade Federal de Minas Gerais (1999), doutorado em Imunologia pela Universidade Federal de Minas Gerais (2003), e pós-doutorado pelo Centro de Pesquisa René Rachou-FIOCRUZ-MG (2006). Atualmente é professora da Universidade Estadual de Montes Claros-UNIMONTES, fazendo parte do corpo docente do Programa de pós-graduação em Ciências da Saúde strictu sensu, professora da Faculdade de Medicina de Itajubá-FMIT e pesquisadora colaboradora do Centro de Pesquisa René Rachou-FIOCRUZ-MG. Possui experiência na área de Imunologia básica atuando principalmente nos seguintes temas: Imunologia de Mucosas, Tolerância oral, Alergia alimentar; e na área de Imunoparasitologia, com ênfase em doença de Chagas. Concluiu em setembro/2015 o pós-doutorado na Universidade de Santiago de Compostela-USC, Espanha, sob orientação do Dr. Arturo Gonzalez Quintela. Desde junho/2020 integra a Comissão Técnica de Saúde do Conselho Regional de Biologia da 4ª Região (CRBio-04).

References

Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016;19(2):181-93. 10.1016/j.chom.2016.01.007.

Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 2019;129(9):3625-3639. 10.1172/JCI126363.

Hatton CF, Botting RA, Dueñas ME, Haq IJ, Verdon B, Thompson BJ et al. Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nat Commun. 2021;12(1):7092. 10.1038/s41467-021-27318-0.

Kindler E, Thiel V. SARS-CoV and IFN: Too Little, Too Late. Cell Host Microbe.

;19(2):139–141. 10.1016/j.chom.2016.01.012.

Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in

COVID-19: An overview of the involvement of the chemokine/chemokine-receptor

system. Cytokine Growth Factor Rev. 2020;53:25-32. 10.1016/j.cytogfr.2020.05.003.

Salvi V, Nguyen HO, Sozio F, Schioppa T, Gaudenzi C, Laffranchi M et al. SARSCoV-2–associated ssRNAs activate inflammation and immunity via TLR7/8. JCI

Insight. 2021;6(18). 10.1172/jci.insight.150542.

Khanmohammadi S, Rezaei N. Role of Toll-like receptors in the pathogenesis of

COVID-19. J Med Virol. 2021;93(5):2735-2739. 10.1002/jmv.26826.

De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent

insights into emerging coronaviruses. Nat Rev Microbiol, 2016;14:523-534.

https://doi.org/10.1038/nrmicro.2016.81.

Snell LM, Mcgaha TL, Brooks DG. Type I Interferon in Chronic Virus Infection and

Cancer. Trends Immunol. 2017;38(8):542-557. 10.1016/j.it.2017.05.005.

Nieman DC Henson DA; Austin MD, Brown VA. Immune response to a 30-minute

walk. Med Sci Sports Exerc, 2005;37(1):57-62. 10.1249/01.mss.0000149808.38194.21.

Nieman DC. COVID-19: A tocsin to our aging, unfit, corpulent, and immunodeficient

society. J Sport Health Sc. 2020;9(4):293-301. 10.1016/j.jshs.2020.05.001.

Laddu DR, Lavie CJ, Phillips SA, Arena R. Physical activity for immunity protection:

Inoculating populations with healthy living medicine in preparation for the next

pandemic. Prog Cardiovasc Dis. 2021;64:102-104. 10.1016/j.pcad.2020.04.006.

Jimeno-Almazán A, Pallarés JG, Buendía-romero Á, Martínez-Cava A, Franco-López

F, Martínez BJ Sánchez-Alcaraz et al. Post-COVID-19 Syndrome and the Potential

Benefits of Exercise. Int J Environ Res Public Health. 2021;18(10):5329.

3390/ijerph18105329.

Jimeno-Almazán A, Martínez-Cava A, Buendía-Romero Á, Franco-López F, SánchezAgar JÁ, Sánchez-Alcaraz BJ et al. Relationship between the severity of persistent

symptoms, physical fitness, and cardiopulmonary function in post-COVID-19

condition. A population-based analysis. Intern Emerg Med. 2022;1-10.

1007/s11739-022-03039-0.

Baker FL, Smith KA, Zuniga TM, Batatinha H; Niemiro GM, Pedlar CR et al. Acute

exercise increases immune responses to SARS CoV-2 in a previously infected man.

Brain Behav Immun Health. 2021;18. 10.1016/j.bbih.2021.100343.

Rodríguez-Blanco C; Bernal-Utrera C, Anarte-Lazo E, Saavedra-Hernandez M, De-LaBarrera-Aranda E, Serrera-Figallo MA et al. Breathing exercises versus strength

exercises through telerehabilitation in coronavirus disease 2019 patients in the acute

phase: A randomized controlled trial. Clin Rehabil. 2022;36(4):486-497.

1177/02692155211061221.

Halabchi F, Selk-Ghaffari M, Tazesh B, Mahdaviani B. The effect of exercise

rehabilitation on COVID-19 outcomes: a systematic review of observational and

intervention studies. Sport Sci Health. 2022;1-19. 10.1007/s11332-022-00966-5.

Martin SA, Pence BD, Woods JA. Exercise and Respiratory Tract Viral Infections.

Exerc Sport Sci Rev. 2009;37(4):157–164. 10.1097/JES.0b013e3181b7b57b.

Woods JA, Hutchinson NT, Powers SK, Roberts WO, Gomez-Cabreza MC, Radak Z et

al. The COVID-19 pandemic and physical activity. Sports Medicine and Health

Science. 2020;2(2):55-64. https://doi.org/10.1016/j.smhs.2020.05.006.

Nieman DC. Exercise Is Medicine for Immune Function: Implication for COVID-19.

Curr Sports Med Rep. 2021;20(8):395-401. 10.1249/JSR.0000000000000867.

Nickel T, Hanssen H, Emslander I, Drexel V, Hertel G, Schmidt-Trucksass A et al.

Immunomodulatory Effects of Aerobic Training in Obesity. Mediators of Inflamm,

;1–10. 10.1155/2011/308965.

Nickel T, Emslander I, Sisic Z, David R, Schmaderer C, Marx N et al. Modulation of

dendritic cells and toll-like receptors by marathon running. Eur J Appl Physiol,

;112(5):1699–1708. 10.1007/s00421-011-2140-8.

Zheng Q, Cui G, Chen J; Gao H, Wei Y, Uede T et al. Regular exercise enhances the

immune response against microbial antigens through up-regulation of toll-like receptor

signaling pathways. Cell Physiol Biochem. 2015;37(2):735-46. 10.1159/000430391.

Lackermair K, Scherr J, Waidhauser G, Methe H, Hoster E, Nieman DC et al. Influence

of polyphenol-rich diet on exercise-induced immunomodulation in male endurance

athletes. Appl Physiol Nutr Metab, 2017;42(10):1023–1030. 10.1139/apnm-2017-0063.

Perkins RK, Lavin KM, Raue U, Jemiolo B, Trappe SW, Trappe TA. Effects of aging

and lifelong aerobic exercise on expression of innate immune components in human

skeletal muscle. J Appl Physiol (1985). 2020;129(6):1483-1492.

1152/japplphysiol.00615.2020.

Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol.

;5:461. 10.3389/fimmu.2014.00461.

Cervantes-Barragan L, Zust R, Weber F, Spiegel M, Lang KS, Akira S et al. Control of

coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon.

Blood. 2006;109(3):1131–1137. 10.1182/blood-2006-05-023770.

Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID19 and potential

vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy

Immunol. 2020;38:1-9. 10.12932/AP-200220-0772.

Moreno-Eutimio MA, López-Macías C, Pastelin-Palacios R. Bioinformatic analysis and

identification of single-stranded RNA sequences recognized by TLR7/8 in the SARSCoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020;22(4-5):226-

10.1016/j.micinf.2020.04.009.

Shaath H, Vishnubalaji R, Elkord E, Alajez NM. Single-Cell Transcriptome Analysis

Highlights a Role for Neutrophils and Inflammatory Macrophages in the Pathogenesis

of Severe COVID-19. Cells. 2020;9(11):2374. 10.3390/cells9112374.

Faghy MA; Arena R, Stoner L, Haraf RH, Josephson R, Hills PA et al. The need for

exercise sciences and an integrated response to COVID-19: A position statement from

the international HL-PIVOT network. Prog Cardiovasc Dis. 2022;67:2-10.

1016/j.pcad.2021.01.004.

Severa M, Diotti RA, Etna MP, Rizzo F, Fiore S, Ricci D et al. Differential plasmacytoid

dendritic cell phenotype and type I Interferon response in asymptomatic and severe

COVID-19 infection. PLoS Pathog. 2021;17(9). 10.1371/journal.ppat.1009878.

Van Der Sluis RM; Cham LB, Gris-Oliver A, Gammelgaard KR, Pedernsen JG, Idorn

M et al. TLR2 and TLR7 mediate distinct immunopathological and antiviral

plasmacytoid dendritic cell responses to SARS-CoV-2 infection. EMBO J. 2022;41(10).

15252/embj.2021109622.

Bortolotti D, Gentili V, Rizzo S, Schiuma G, Beltrami S, Strazzabosco G et al. TLR3

and TLR7 RNA Sensor Activation during SARS-CoV-2 Infection. Microorganism.

;9(9):1820. 10.3390/microorganisms9091820.

Van Der Made CI, Simons A, Schuurs-Hoeijmakers J, Van Den Heuvel G; Mantere T,

Kersten S et al. Presence of genetic variants among young men with severe COVID-19.

JAMA. 2020;324(7):663-673. 10.1001/jama.2020.13719.

Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Renkilaraj MRLM et

al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with lifethreatening COVID-19. Sci Immunol. 2021;6(62). 10.1126/sciimmunol.abl4348.

Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D et al. Association

of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males:

findings from a nested case-control study. Elife. 2021;10. 10.7554/eLife.67569.

Solanich X, Vargas-Parra G, Van Der Made CI, Simons A, Schuurs-Hoeijmakers J,

Antolí A et al. Genetic screening for TLR7 variants in young and previously healthy

men with severe COVID-19. Front Immunol. 2021;12.

https://doi.org/10.3389/fimmu.2021.719115.

Minashkin MM, Grigortsevich N, Kamaeva AS, Barzasona VV, Traspov AA, Godkov

MA et al. The Role of Genetic Factors in the Development of Acute Respiratory Viral

Infection COVID-19: Predicting Severe Course and Outcomes. Biomedicines.

;10(3):549. 10.3390/biomedicines10030549.

Alseoudy MM, Elgamal M, Abdelghany DA, Borg AM, El-Mesery A, Elzeiny D et al.

Prognostic impact of toll-like receptors gene polymorphism on outcome of COVID-19

pneumonia: A case-control study. Clin Immunol. 2022;235.

1016/j.clim.2022.108929.

El-Hefnawy S, Eid HA, Mostafa RF, Soliman S, Omar TA, Azmy RM. COVID-19

susceptibility, severity, clinical outcome and Toll-like receptor (7) mRNA expression

driven by TLR7 gene polymorphism (rs3853839) in middle-aged individuals without

previous comorbidities. Gene rep. 2022;27. 10.1016/j.genrep.2022.101612.

Mantovani S, Daga S, Fallerini C, Baldassarri M, Benetti E, Picchiotti N et al. Rare

variants in Toll-like receptor 7 results in functional impairment and downregulation of

cytokine-mediated signaling in COVID-19 patients. Genes Immun. 2022;23(1):51-56.

1038/s41435-021-00157-1.

Abolhassani H, Vosughimotlagh A, Asano T, Landegren N, Boisson B, Delavari S et

al. X-Linked TLR7 deficiency underlies critical covid-19 pneumonia in a male patient

with ataxia-telangiectasia. J Clin Immunol. 2022;42(1):1-9. 10.1007/s10875-021-

-y.

Pessoa NL, Diniz LMO, Andrade AS, Kroon EG, Bentes AA, Campos MA. Children

with sickle cell disease and severe COVID-19 presenting single nucleotide

polymorphisms in innate immune response genes - a case report. EJHaem.

a;3(1):199-202. 10.1002/jha2.325.

Pessoa NL, Bentes AA, Carvalho AL, Silva TBS, Alves PA, Reis EVS et al. Case report:

hepatitis in a child infected with SARS-CoV-2 presenting toll-like receptor 7 Gln11Leu

single nucleotide polymorphism. Virol J. 2021b;18(1):180. 10.1186/s12985-021-

-3.

Yano H, Ushida M, Nakai R, Ishida K, Kato Y, Kawanishi N et al. Exhaustive exercise

reduces TNF-α and IFN-α production in response to R-848 via toll-like receptor 7 in

mice. Eur J Appl Physiol. 2010;110:797–803. https://doi.org/10.1007/s00421-010-

-1.

Campbell JP, Turner JE. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front Immunol. 2018;9:648. 10.3389/fimmu.2018.00648.

Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. J Sport Health Sci. 2019;8(3):201-217. 10.1016/j.jshs.2018.09.009.

Published

2023-04-27

How to Cite

MARTINS RIBEIRO, D.; CHAVES ANDRADE, M. Physical Exercise as a Prophylactic Ally Against COVID-19: a Hypothesis Involving the Toll-Like Receptor 7 (TLR-7): Exercise as a prophylactic ally against covid-19: a hypothesis involving the Toll-Like Receptor 7. Revista Unimontes Científica, [S. l.], v. 25, n. 1, p. 1–16, 2023. DOI: 10.46551/ruc.v25n1a8. Disponível em: https://www.periodicos.unimontes.br/index.php/unicientifica/article/view/5164. Acesso em: 23 nov. 2024.

Most read articles by the same author(s)