EFFICACY ASSESSMENT OF LARVICIDES IN THE CONTROL OF FLIES IN A LAYING INDUSTRIAL AVIARY
DOI:
10.46551/ruc.v24n1a3Resumen
The eggs production through the confinement of chickens generates some inconveniences, among which the accumulation of manure, rich in organic matter that provides an environment conducive to the development and proliferation of Musca domestica. The objective of this work was to evaluate in a controlled environment the larvicidal efficacy in suppressing Musca domestica larvae. Material and methods used were the distribution of plastic trays exposed to oviposition in the farm sheds’ vicinity, applying the treatments in a controlled environment. Results shown that the isolated and intercropped treatments were effective in controlling the larvae. Concluding that the evaluation of the larvicidal efficacy of the Ciromanzine 50% principles; Triflumuron 48%; Ciromanzine 10%; and dolomitic limestone were effective in controlling larvae development in a controlled environment.
Descargas
Citas
Axtell, R. C.; Arends, J. J. Ecology and management of arthropod pests of poultry. Ann Ver Entomol , v. 35, n. 1, pp. 101-126, 1990. https://doi.org/10.1146/annurev.en.35.010190.000533
Scott, J. G.; Alefantis, T. G.; Kaufman, P. E.; et al. Insecticide resistance in house flies from caged-layer poultry facilities. Pest Manage Science, v. 56, pp. 147-153. 2000. https://doi.org/10.1002/(SICI)1526-4998(200002)56:2<147::AID-PS106>3.0.CO;2-7
Acevedo, G. R.; Zapater, M.; Toloza, A. C. Insecticide resistance of house fly, Musca domestica (L.) from argentina. Parasitology Research, v. 105, n. 2, pp. 489-493, 2009. https://doi.org/10.1007/s00436-009-1425-x
Khan, H. A. A.; Shad, S. A.; Akram, W. Effect of livestock manures on the fitness of house fly, Musca domestica L.(Diptera: Muscidae). Parasitology Research, v. 111, n. 3, pp. 1165-1171, 2012. https://doi.org/10.1007/s00436-012-2947-1
Kavran, M.; Marija, F. Z.; Aleksandra, M. I. Ć.; et al. choice of optimal biocide combination to control flies (diptera: muscidae). Annals Agricultural and Environment Medicine, v. 22, n. 2, 2015. https://doi.org/10.5604/12321966.1152073
Forster, M.; Klimpel, S.; Mehlhorn, H.; et al. pilot study on synanthropic flies (eg musca, sarcophaga, calliphora, fannia, lucilia, stomoxys) as vectors of pathogenic microorganisms. Parasitology Research, v. 101, n. 1, pp. 243-246, 2007. https://doi.org/10.1007/s00436-007-0522-y
Kumar, P.; Mishra, S.; Malik, A.; et al. housefly (Musca domestica l.) control potential of Cymbopogon citratus stapf. (poales: poaceae) essential oil and monoterpenes (citral and 1, 8-cineole). Parasitology Research, v. 112, n. 1, pp. 69-76, 2013. https://doi.org/10.1007/s00436-012-3105-5
Zhu, X. L.; Wang, S. H.; Liu, Q.; et al. Determination of residues of cyromazine and its metabolite, melamine, in animal-derived food by gas chromatography mass spectrometry with derivatization. Journal Agricultural and Food Chemistry, v. 57, pp. 11075–11080, 2009. https://doi.org/10.1021/jf902771q
Ong, S. Q.; Majid, A. B.; Abdul, H.; et al. degradation of insecticides in poultry manure: determining the insecticidal treatment interval for managing house fly (diptera: muscidae) populations in poultry farms. Journal economic entomology, v. 109, n. 2, pp. 952-957, 2016. https://doi.org/10.1093/jee/tow014
Cao, M. X.; Song, F. L.; Zhao, T. Y.; et al. Survey of deltamethrin resistance in houseflies (musca domestica) from urban garbage dumps in northern china. Environmental Entomology, v. 35, n. 1, pp. 1-9, 2006. https://doi.org/10.1603/0046-225X-35.1.1
Malik, A.; Singh, N.; Satya, S. House fly (Musca domestica): A review of control strategies for a challenging pest. Journal Environmental Science Health, v. 42, pp. 453-469, 2007. https://doi.org/10.1080/03601230701316481
Kaufman, P. E.; Nunez, S. C.; Mann, R. S.; et al. 2010b. nicotinoid and pyrethroid insecticide resistance in houseflies (diptera: muscidae) collected from florida dairies. Pest Manage Science, v. 66, n. 3, pp. 290-294, 2010. https://doi.org/10.1002/ps.1872
R Core Team (2013). R: a language and environment for statistical computing. r foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
Pinto, M. C. do P. A. P. Resistance of Musca domestica L. populations to cyromazine (insect growth regulator) in Brazil. Memorias do Instituto Oswaldo Cruz, v. 96, pp. 729-732, 2001. https://dx.doi.org/10.1590/S0074-02762001000500027
Crespo, D. C.; Lecuona, R. E.; Hogsette, J. A. strategies for controlling house fly populations resistant to cyromazine. Neotropical entomology, v. 31, n. 1, pp. 141-147, 2002. https://dx.doi.org/10.1590/S1519-566X2002000100019