Accessing the genetic diversity of natural populations of Acrocomia aculeata (Arecaceae) through microsatellites
DOI:
10.46551/ruc.v26n2a8Palabras clave:
Macaw palm, SSR, Cerrado, AMOVAResumen
Acrocomia aculeata holds cultural and economic importance as the second-largest producer of oleaginous fruits in arid and semi-arid regions, with potential for exploitation as an agricultural crop. It is a tropical arborescent species distributed throughout tropical and subtropical Americas, with a significant occurrence of natural populations in the Cerrado biome. Its broad distribution across various landscapes is supported by a mixed reproductive system, diverse pollination strategies, and resilience to environmental stressors. Despite its resilience in fragmented habitats, anthropogenic habitat fragmentation generally harms populations, affecting gene flow and genetic diversity. In this context, this study aimed to assess genetic diversity and structure of natural populations of A. aculeata from northern Minas Gerais using microsatellites. The five natural populations were named according to the municipality where they were collected, being them Espinosa, Mirabela, Claro dos Poções, Grão Mogol, and Itacambira. The results revealed that four SSR loci amplified 46 different alleles, totaling 1352 alleles. The loci showed significant deviations from Hardy-Weinberg Equilibrium, with a mean f of 0.288. Among the populations analyzed, ITA was the most genetically diverse, while ESP was the least diverse. As subpopulations, they displayed high genetic structure, with a mean FST of 0.329 and FIT of 0.484. The study suggests the natural populations of Macaw palm in northern Minas Gerais that can be used for germplasm banks, and the ones that requires human intervention to restore genetic diversity.
Descargas
Citas
(1) RODRIGUES-JUNIOR, A. G. et al. Temperature effects on Acrocomia aculeata seeds provide insights into overcoming dormancy in neotropical savanna palms. Flora, v. 223, p. 30-37, 2016. https://doi.org/10.1016/j.flora.2016.04.011.
(2) SCARIOT, Aldicir; LLERAS, Eduardo; HAY, John D. Flowering and fruiting phenologies of the palm Acrocomia aculeata: patterns and consequences. Biotropica, p. 168-173, 1995. https://doi.org/10.2307/2388992
(3) MENGISTU, Fekadu G.; MOTOIKE, Sérgio Y.; CRUZ, Cosme D. Molecular characterization and genetic diversity of the macaw palm ex situ germplasm collection revealed by microsatellite markers. Diversity, v. 8, n. 4, p. 20, 2016. https://doi.org/10.3390/d8040020.
(4) NUCCI, S. M. et al. Development and characterization of microsatellites markers from the macaw. Molecular Ecology Resources, v. 8, n. 1, p. 224-226, 2008. https://doi.org/10.1111/j.1471-8286.2007.01932.x.
(5) DE LIMA, Natácia Evangelista; MEEROW, Alan William; MANFRIN, Maura Helena. Genetic structure of two Acrocomia ecotypes (Arecaceae) across Brazilian savannas and seasonally dry forests. Tree Genetics & Genomes, v. 16, n. 4, p. 56, 2020. https://doi.org/10.1007/s11295-020-01446-y.
(6) SIMIQUELI, Guilherme Ferreira et al. Inbreeding depression as a cause of fruit abortion in structured populations of macaw palm (Acrocomia aculeata): Implications for breeding programs. Industrial Crops and Products, v. 112, p. 652-659, 2018. https://doi.org/10.1016/j.indcrop.2017.12.068.
(7) MAZZOTTINI-DOS-SANTOS, Hellen C. et al. Floral structure in Acrocomia aculeata (Arecaceae): evolutionary and ecological aspects. Plant systematics and evolution, v. 301, p. 1425-1440, 2015. https://doi.org/10.1007/S00606-014-1.
(8) SCARIOT, Aldicir O.; LLERAS, Eduardo; HAY, John D. Reproductive biology of the palm Acrocomia aculeata in Central Brazil. Biotropica, p. 12-22, 1991. https://doi.org/10.2307/2388683
(9) COSTA, José MC; OLIVEIRA, Dalany M.; COSTA, Luis EC. Macauba Palm—Acrocomia aculeata. In: Exotic Fruits. Academic Press, 2018. p. 297-304. https://doi.org/10.1016/B978-0-12-803138-4.00039-3.
(10) RESENDE, Rafael T. et al. Data-based agroecological zoning of Acrocomia aculeata: GIS modeling and ecophysiological aspects into a Brazilian representative occurrence area. Industrial crops and products, v. 154, p. 112749, 2020. https://doi.org/10.1016/j.indcrop.2020.112749.
(11) ROSADO, Renato Domiciano Silva et al. Genetic parameters and simultaneous selection for adaptability and stability of macaw palm. Scientia horticulturae, v. 248, p. 291-296, 2019. https://doi.org/10.1016/j.scienta.2018.12.041.
(12) MADEIRA, Débora Durso Caetano et al. Phenotypic characterization and genetic diversity of macauba (Acrocomia aculeata) accessions based on oil attributes and fruit biometrics. Genetic Resources and Crop Evolution, p. 1-19, 2024. https://doi.org/10.21203/rs.3.rs-3410726/v1.
(13) ALMEIDA‐ROCHA, Juliana M. et al. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: A global meta‐analysis. Molecular Ecology, v. 29, n. 24, p. 4812-4822, 2020. https://doi.org/10.1111/mec.15688.
(14) DOYLE, Jeffrey. DNA protocols for plants. In: Molecular techniques in taxonomy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. p. 283-293.
(15) FALEIRO, F. G. et al. Operacionalizacao da extracao de DNA de especies nativas do cerrado visando analises moleculares. 2004.
(16) VAN OOSTERHOUT, Cock et al. MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular ecology notes, v. 4, n. 3, p. 535-538, 2004. https://doi.org/10.1111/j.1471-8286.2004.00684.x.
(17) PEAKALL, R. O. D.; SMOUSE, Peter E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular ecology notes, v. 6, n. 1, p. 288-295, 2006. https://doi.org/10.1093/bioinformatics/bts460.
(18) CHAPUIS, Marie-Pierre; ESTOUP, Arnaud. Microsatellite null alleles and estimation of population differentiation. Molecular biology and evolution, v. 24, n. 3, p. 621-631, 2007. https://doi.org/10.1093/molbev/msl191.
(19) DEMPSTER, Arthur P.; LAIRD, Nan M.; RUBIN, Donald B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the royal statistical society: series B (methodological), v. 39, n. 1, p. 1-22, 1977.
(20) GOUDET, Jérôme. Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. http://www2.unil.ch/popgen/softwares/fstat.htm. Updated from Goudet (1995). 2003.
(21) WRIGHT, Sewall. The genetical structure of populations. Annals of eugenics, v. 15, n. 1, p. 323-354, 1949. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x.
(22) WEIR, Bruce S.; COCKERHAM, C. Clark. Estimating F-statistics for the analysis of population structure. evolution, p. 1358-1370, 1984.https://doi.org/10.1111/j.1558-5646.1984.tb05657.x.
(23) RICE, William R. Analyzing tables of statistical tests. Evolution, p. 223-225, 1989.
(24) WANG, Ian J. Choosing appropriate genetic markers and analytical methods for testing landscape genetic hypotheses. 2011. https://doi.org/10.1111/j.1365-294X.2011.05123.x.
(25) ALLENDORF, Fred W. Genetic drift and the loss of alleles versus heterozygosity. Zoo biology, v. 5, n. 2, p. 181-190, 1986. https://doi.org/10.1002/zoo.1430050212
(26) GREENBAUM, Gili et al. Allelic richness following population founding events–a stochastic modeling framework incorporating gene flow and genetic drift. PloS one, v. 9, n. 12, p. e115203, 2014. https://doi.org/10.1371/journal.pone.0115203.
(27) SCARIOT, A. Seed dispersal and predation of the palm Acrocomia aculeata. 1998.
(28) FRICKE, Evan C. et al. Mutualistic strategies minimize coextinction in plant–disperser networks. Proceedings of the Royal Society B: Biological Sciences, v. 284, n. 1854, p. 20162302, 2017. https://doi.org/10.1098/rspb.2016.2302.
(29) ARAÚJO, Maircon Rasley Gonçalves et al. Fine-scale spatial genetic structure and gene flow in Acrocomia aculeata (Arecaceae): Analysis in an overlapping generation. Biochemical Systematics and Ecology, v. 71, p. 147-154, 2017. https://doi.org/10.1016/j.bse.2017.02.005.